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Motivation

» Establishing user's preferences through a
conversation for an effective recommendation

remains an open question

= There exists little conversational data for such a task.
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Problem

Can you name a movie you like?
Titanic
Why do you like it?

Well, I love Leonardo, and
it has great cinematography.

What about a movie you dislike?
I didn't like Shrek...

Why is that?

I just didn't get the jokes

I think you might like the
movie...
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Problem Statement

Can you name a movie you like?
Titanic
Why do you like it?

Well, I love Leonardo, and
it has great cinematography.

What about a movie you dislike?
I didn't like Shrek...

Why is that?

I just didn't get the jokes

I think you might like the

<€<—— Movie 1

<€<—— Movie 2

<€<—— Movie 3

i movie...



Contributions

* Development of a public conversational dataset
MovieSent, annotated with:
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Contributions

* Development of a public conversational dataset
MovieSent, annotated with:

— Entities' IDs
- Fine-grained user sentiment
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Contributions

* Development of a public conversational dataset
MovieSent

= A new conversational recommendation method
"Conversational Collaborative Filtering using External

Data"
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Contributions

* Development of a public conversational dataset
MovieSent

= A new conversational recommendation method
ConvExtr, which:
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Contributions

* Development of a public conversational dataset
MovieSent

= A new conversational recommendation method
ConvExtr, which:

— Estimates user’s sentiment towards first 2 movies

— Uses external dataset of reviews to predict user score
towards the 3™ movie
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MovieSent Dataset Construction

Based on the Coached Conversational Preference Elicitation
dataset (CCPE)?

: : 1 "Coached Conversational Preference Elicitation" Radlinski et al. 2019



MovieSent Dataset Construction

1. Extracted conversations with at least 3 movies mentioned
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MovieSent Dataset Construction

1. Extracted conversations with at least 3 movies mentioned

2. Movies labeled with RottenTomatoes IDs.

)
o~



MovieSent Dataset Construction

1. Extracted conversations with at least 3 movies mentioned

2. Movies labeled with RottenTomatoes IDs.

3. Movies labeled with fine-grained user sentiment towards
them:

— Scale: [-3; +3] & None
- 8 judges
:> - 20% overlap
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Examples of labeled utterances

Wizard utterance User Utterance Entity Sentiment
What would be one of |llove Mr. and Mrs. Smith. | mr_and_mrs_smith | 3
your favorite movies? | That's a great one.
Have you seen the | started watching that, | the_shape_of_water | -2
Shape of Water? but | just couldn't getinto
it enough to finish.
Have you seen Nope. bridesmaids_2011 None

Bridesmaids?
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MovieSent Dataset Statistics

Conversations 489
Sentiment labels 2488
Unique entities 712

Weighted Cohen'sk  0.77
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External Data

Scraped critics' reviews from RottenTomatoes:

Reviews /715,766
Critics 3,664
Median reviews 34

Unique Movies 42,423
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Sentiment Estimation

Can you name a movie you like?
Titanic.
Why do you like it?

Well, I love Leonardo, and
it has great cinematography

What about a movie you dislike?
I didn't like Shrek...

Example Snippet Conversation
from MovieSent

BERT-base Random
uncased Forest

>NENENE™
Conversation embeddings

Sentiment

Estimate for
Seen Movies




ConvExtr: General Idea

I[tem 1
[tem 2

Item T
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ConvExtr: General Idea

Item 1
I[tem 2

Item T
[tem S

Item N

Critic 1 | Critic 2

Critic k | Conv User

Prediction for
Unseen movie




ConvExtr Model

Critics (Paid Professionals) #
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ConvExtr Model

critic_id movie id score review

greg-maki the_counselor 2013 2.0 Scott presents i...

robert-roten romeo_must_die 4.0 The main problem...

kat-hughes annabelle creation 3.0 Annabelle: Creat...

Scraped reviews (Ext. data)

Can you name a movie you like?

Critics

Titanic.

Whv do vou like it? 123 3l Similar to Users
y do you like it:

Well, I love Leonardo, and
it has great cinematography

Example Snippet Conversation

What about a movie you dislike?
) 1 didn't like Shrek...



ConvExtr Model

critic_id movie_id score review

greg-maki the_counselor_2013 2.0 Scott presents i... Average CI‘itiCS EmbEddlngS

robert-roten romeo_must_die 4.0 The main problem...

kat-hughes annabelle creation 3.0 Annabelle: Creat...

Scraped reviews (Ext. data)

Can you name a movie you like?

Critics
123V k3l Similar to Users

Titanic.

Why do you like it?

Well, I love Leonardo, and
it has great cinematography

Example Snippet Conversation

What about a movie you dislike?
) - T didn't like Shrek...



ConvExtr Model

critic_id movie _id

greg-maki the_counselor_2013 2.0 Scott presents i... Average CI']_t]_CS EmbEddlngS

robert-roten romeo_must_die 4.0 The main problem...

kat-hughes annabelle creation 3.0 Annabelle: Creat...

Scraped reviews (Ext. data)

Can you name a movie you like? -
Critics Earth

Titanic. > .. Movers
i 123V sl Similar to Users
Why do you like it?
_/ .
Well, I love Leonardo, and Cosine
it has great cinematography Similarity
BERT-base

Example Snippet Conversation Conversation embeddings

: from MovieSent

What about a movie you dislike?
uncased
) ™ 1 didn't like Shrek... >N



ConvExtr Model

title CS AS description genre released runtime

BERT-base >0
cars 75 79 lightning m... [owen wilso [action & a... 2006 116 uncased
300 60 89 sin city au... [gerard but... [action & a... 2007 116

Movies metadata (Ext. data)

Metadata embeddings

i for unseen movie

1408 80 61 renowned ho. liohn cusac... [horror, my... 2007 94




ConvExtr Model

Can you name a movie you like?
Titanic.

Why do you like it?

BERT-base
uncased

Well, I love Leonardo, and

it has great cinematography Conversation

embeddings

What about a movie you dislike?
I didn't like Shrek...

Example Snippet Conversation
from MovieSent

titte CS AS description people genre released runtime

1408 80 61 renowned ho [iohn cusac... [horror, my. 2007 94 BERT—baSE
cars 75 79 lightning m... [owen wilso... [action & a... 2006 116 uncased
300 60 89 sin city au...  [gerard but... [action & a... 2007 116
Movies metadata (Ext. data)
Cosine

Metadata embeddings Similarity

: for unseen movie




ConvExtr Model

Can you name a movie you like?
Titanic.

Why do you like it?

BERT-base
uncased

Well, I love Leonardo, and _
it has great cinematography Conversation

embeddings

What about a movie you dislike?
I didn't like Shrek...

Example Snippet Conversation
from MovieSent

titte CS AS description people genre released runtime
1408 80 61 renowned ho [iohn cusac... [horror, my. 2007 94 BERT_baSe ).’///
cars 75 79 lightning m... [owen wilso... [action & a... 2006 116

. oven wiso-. uncased
300 60 89 sin city au...  [gerard but... [action & a... 2007 116
Movies metadata (Ext. data)
Cosine

Metadata embeddings Similarity
for unseen movie
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ConvExtr Model

CF Prediction

Similarity to
critics

Metadata
Cosine
Similarities




Results
Model RMSE MAE
Baseline methods
Average Critics 1.34 0.99

Average Audience 1.24 0.95
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Results
Model RMSE MAE
Baseline methods
Average Critics 1.34 0.99
Average Audience 1.24 0.95
ConvExtr (our method)
KNN  (CF only) 120  0.94
SVD  (CF only) 1.18*  0.95
SVD++ (CF only) 1.14 0.92
GBRT 1.09* 0.84
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Results
Model RMSE MAE
Baseline methods
Average Critics 1.34 0.99
Average Audience 1.24 0.95
ConvExtr (our method)
KNN  (CF only) 120  0.94
SVD  (CF only) 1.18*  0.95
SVD++ (CF only) 1.14 0.92
GBRT 1.09* 0.84
Best Possible: OR:7! 0.64



Conclusion

» Using conversation to select more similar users for CF
improves recommendation performance

* The resulting insights offer a promising direction for
improving conversational recommendation systems

= Dataset and code available at:
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