hhu,

Domain-independent User Simulation with Transformers for Task-oriented Dialogue Systems

Hsien-chin Lin, Nurul Lubis, Songbo Hu, Carel van Niekerk, Christian Geishauser, Michael Heck, Shutong Feng, and Milica Gašić Dialog Systems and Machine Learning Heinrich Heine University Düsseldorf

The problems of training with ...

- Real users
 - Time consuming
 - Noisy feedback

The problems of training with ...

- Real users
 - Time consuming
 - Noisy feedback
- Corpus
 - Not interactive
 - Only includes a limited amount of trajectories

The problems of training with ...

- Real users
 - Time consuming
 - Noisy feedback
- Corpus
 - Not interactive
 - Only includes a limited amount of trajectories
- Limited coverage
 - Not feasible to explore all possible paths

Training with ...

- User simulator
 - Efficient
 - Controllable
 - Interactive

Training with user simulators

The problems of domain-dependent models

- Rule-based user simulator (Schatzmann et al., 2007)
 - Behaviour is different to real users
 - Re-write rules when adapting to new domains
 - Design rules for complex scenarios is difficult

Training with user simulators

The problems of domain-dependent models

- Rule-based user simulator (Schatzmann et al., 2007)
 - Behaviour is different to real users
 - Re-write rules when adapting to new domains
 - Design rules for complex scenarios is difficult
- Statistical user simulator (Kreyssig et al., 2018, Gür et al., 2018)
 - Still domain-dependent (feature representation or output target)
 - Need new labels
 - Feature representation modification
 - Retrain the whole model

Model structure

Transformer-based domain-independent **U**ser **S**imulator (TUS)

- Input: slot sequence
- Output: value sequence
- Domain-independent feature representation

Input sequence

- Slots from user goal
- Slots mentioned by system
- Slot order: user's priorities

Input sequence

- Slots from user goal
- Slots mentioned by system
- Slot order: user's priorities
- History information

Input sequence

- Slots from user goal
- Slots mentioned by system
- Slot order: user's priorities
- History information
- Special tokens

Feature representation for each slot

- Statistical features
 - which type the slot is (inform, request...)
 - whether the slot is fulfilled
 - **...**

	v_{type}	v_{ful}	
Hotel-Area	1 0	0	

Feature representation for each slot

- Statistical features
 - which type the slot is (inform, request...)
 - whether the slot is fulfilled
 - **...**
- Different slots may have the same statistical features

	v_{type}	v_{ful}	
Hotel-Area	1 0	0	•••
Hotel-Price	1 0	0	

Feature representation for each slot

- Statistical features
 - which type the slot is (inform, request...)
 - whether the slot is fulfilled
 - ...
- Different slots may have the same statistical features
- Dialogue-scope identity
 - Just for the duration of one dialogue

	v_{type}	v_{ful}	v_{index}^{domain}	v_{index}^{slot}
Hotel-Area	1 0	0	 10000	10000
Hotel-Price	1 0	0	 10000	01000

Feature representation for each slot

- Statistical features
 - which type the slot is (inform, request...)
 - whether the slot is fulfilled
 - ____
- Different slots may have the same statistical features
- Dialogue-scope identity
 - Just for the duration of one dialogue
 - It may be different in other dialogues

Dialogue 1				
J	v_{type}	v_{ful}	v_{index}^{domain}	v_{index}^{slot}
Hotel-Area	1 0	0	 10000	10000
Hotel-Price	1 0	0	 10000	01000

Dialogue 2				
	v_{type}	v_{ful}	v_{index}^{domain}	v_{index}^{slot}
Hotel-Area	1 0	0	 00100	00010
Hotel-Price	1 0	0	 00100	10000

Domain-independent output

- The value of each slot
 - Instead of predicting which value belongs to the slot

Hotel-Area

0 North

South

D East

West

•

Center

Domain-independent output

- The value of each slot
 - Instead of predicting which value belongs to the slot
 - TUS predicts where the value comes from

None

0

dontcare

user goal

system state

random select

User goal

Hotel-Area: South

Hotel-Price: Cheap

...

Domain-independent models

When adapting to new domains

- No need
 - Feature modification
 - retraining models

Supervised training for TUS

- Dataset: MultiWOZ 2.1 (Eric et al., 2020)
- Order of the slots in the input sequence
 - Training and testing with the dataset: based on the data
 - Inference without the dataset: randomly generated

Training Policies with TUS

- A better user simulator → a better dialogue policy
 - The performance of policies is an evaluation metric for user simulators

Training Policies with TUS

- A better user simulator → a better dialogue policy
 - The performance of policies is an evaluation metric for user simulators
- Policies are trained by proximal policy optimization (Schulman et al., 2017)
- Different user simulators
 - Rule-based: agenda-based user simulator (Schatzmann et al., 2007)
 - Data-driven: variational hierarchical sequence-to-sequence user simulator (Gür et al. 2018)
 - TUS

Leave-one-domain-out Training

- Training TUS
 - The data related to the selected domain is removed

Leave-one-domain-out Training

- Training dialogue policies by TUS-noX
- The user goal is sampled from all domains

Evaluation

How to evaluate a user simulator?

- Direct methods
- Indirect methods
 - Cross-model evaluation
 - Zero-shot transfer
 - Human evaluation

Cross-model evaluation

- Generalise to other user simulators
 - Trained with TUS when evaluated with ABUS: 10% absolute improvement
 - Trained with ABUS when evaluated with TUS: 35% absolute decrease

US for	US for evaluation				
training	ABUS	VHUS	TUS	avg.	
ABUS	0.93	0.09	0.58	0.53	
VHUS	0.62	0.11	0.37	0.36	
TUS	0.79	0.10	0.69	0.53	

The success rates

Cross-model evaluation

- Generalise to multi-domain scenario
 - VHUS was designed on single-domain

US for	US for evaluation				
training	ABUS	VHUS	TUS	avg.	
ABUS	0.93	0.09	0.58	0.53	
VHUS	0.62	0.11	0.37	0.36	
TUS	0.79	0.10	0.69	0.53	

The success rates

Evaluate policies trained with different user simulators in interaction with humans

- Success rate: whether the given goal is fulfilled based on the user's opinion
- Overall rate: grades the system's performance, 1 (poor) to 5 (excellent)

US for		success		
training	Attr.	Hotel	all	overall
ABUS	0.76	0.70	0.83	3.90
TUS	0.73	0.69	0.83	4.03
TUS-noAttr	0.75	0.54	0.81	4.01
TUS-noHotel	0.73	0.55	0.76	3.86

In comparison to ABUS, without domain-specific information ...

- Comparable success rate
- Slightly better on overall rating

US for		success		
training	Attr.	Hotel	all	overall
ABUS	0.76	0.70	0.83	3.90
TUS	0.73	0.69	0.83	4.03
TUS-noAttr	0.75	0.54	0.81	4.01
TUS-noHotel	0.73	0.55	0.76	3.86

Zero-shot transfer

■ The performance of TUS-noAttr is similar to the one of ABUS and TUS

US for		success		
training	Attr.	Hotel	all	overall
ABUS	0.76	0.70	0.83	3.90
TUS	0.73	0.69	0.83	4.03
TUS-noAttr	0.75	0.54	0.81	4.01
TUS-noHotel	0.73	0.55	0.76	3.86

Zero-shot transfer

- The performance of TUS-noAttr is similar to the one of ABUS and TUS
- TUS-noHotel is worse because around 40% amount of training data is removed

US for		success		
training	Attr.	Hotel	all	overall
ABUS	0.76	0.70	0.83	3.90
TUS	0.73	0.69	0.83	4.03
TUS-noAttr	0.75	0.54	0.81	4.01
TUS-noHotel	0.73	0.55	0.76	3.86

Zero-shot transfer, for both TUS-noAttr and TUS-noHotel

- Comparable result on domain "attraction", worse performance on domain "hotel"
- Domain agnostic feature, when removing one domain,
 - The success rate in the corresponding domain does not decrease
 - Domains that need plenty of data to learn are impacted

US for		success		
training	Attr.	Hotel	all	overall
ABUS	0.76	0.70	0.83	3.90
TUS	0.73	0.69	0.83	4.03
TUS-noAttr	0.75	0.54	0.81	4.01
TUS-noHotel	0.73	0.55	0.76	3.86

Conclusion

- TUS is domain-independent
- TUS outperforms VHUS and is comparable with ABUS
- The zero-shot transfer experiment shows that TUS can handle unseen domains without feature modification or model retraining

Conclusion

- TUS is domain-independent
- TUS outperforms VHUS and is comparable with ABUS
- The zero-shot transfer experiment shows that TUS can handle unseen domains without feature modification or model retraining
- Future work
 - Learn natural language generation
 - apply reinforcement learning to user model training

Thank you

code: https://gitlab.cs.uni-duesseldorf.de/general/dsml/tus_public

visit us at: https://www.cs.hhu.de/en/research-groups/dialog-systems-and-machine-learning.html

